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Analytical expressions of the temporal power spectral models of angle of arrival (AOA) fluctuations are
derived using the generalized exponential spectral model for optical waves propagating through weak non-
Kolmogorov turbulence. Compared with expressions of temporal power spectral models derived from the
general non-Kolmogorov spectral model, the new expressions consider the influences of the inner and outer
scales of finite turbulence. Numerical calculations show that large outer scales of turbulence increase the
value of the temporal power spectrum of AOA fluctuations in low-frequency regions.
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Atmospheric turbulence produces a series of effects,
which include angle of arrival (AOA) fluctuations, irra-
diance scintillation, beam spread, and so on, on imag-
ing or laser systems. AOA fluctuations of optical waves
in the plane of a receiver aperture are related to im-
age dancing in the focal plane of an imaging or laser
system[1]. Several researchers have focused on the case
of non-Kolmogorov turbulence, which covers a wide range
of atmospheric layers[2−8]. The non-Kolmogorov atmo-
spheric turbulence spectral model has been used to in-
vestigate the temporal power spectrum of AOA fluctua-
tions for plane and spherical waves propagating through
weak non-Kolmogorov turbulence[9]. However, no study
is yet available on the influences of the inner and outer
scales of turbulence. AOA fluctuations are mainly caused
by large-scale turbulence cells[10]. As such, the outer
scale of turbulence plays a very important role in the
present analysis. Previous studies have shown that the
generalized Von Karman spectrum[11] and the general-
ized exponential spectrum[12] may be used to analyze
the influence of the outer scale of turbulence on AOA
fluctuations[11−14]. In this letter, the generalized expo-
nential spectral model[12] is adopted to derive theoreti-
cal expressions of the temporal power spectral models of
AOA fluctuations for plane and spherical waves propa-
gating through weak non-Kolmogorov turbulence.

The generalized exponential spectral model is ex-
pressed as[12]

Φn (κ, α, l0, L0) =A (α) · Ĉ2
n · κ−α · f (k, l0, L0, α)

0 6 κ < ∞,3 < α < 5, (1)

f (κ, l0, L0, α) =
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where Ĉ2
n is the generalized refractive-index structure

parameter, κ denotes the magnitude of the spatial-
frequency vector and is related to the size of turbulence

cells, and κl = c (α) /l0,κ0 = C0/L0, l0 and L0 are the
inner and outer scales of turbulence, respectively. C0 de-
pends on the specific application; in this study, it is set
to 4π, similar to that in Ref. [10]. A (α) and c (α) are
expressed as[12]
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Following Ref. [1], the temporal power spectrum of AOA
fluctuations Wθ (ω, β) is the Fourier transform of the tem-
poral covariance function of AOA Cθ (t, β)

Wθ (ω, β) = 4

∞∫

0

Cθ (t, β) cos (ωt) dt. (4)

Using the Taylor frozen turbulence hypothesis, Cθ (t, β)
can be determined from the spatial covariance function
of AOA Cθ (ρ, β)[15]:

Cθ (ρ, β) =πk−2

∞∫

0

κ3Wφ (κ)GD (κ)

· [J0 (ρκ) − cos (2β)J2 (ρκ)] dκ, (5)

where ρ represents the geometrical separation between
points in the plane transverse to the direction of propa-
gation, β is the angle between the baseline and the AOA
observation axis, and k = 2π/λ, where λ denotes the op-
tical wavelength. J0 (ρκ) and J2 (ρκ) respectively denote
the zero and second order Bessel functions. The Taylor
frozen turbulence hypothesis satisfies the association of
ρ = v⊥t, where ν⊥ denotes the wind velocity perpendic-
ular to the propagation path of optical waves. In this

1671-7694/2013/110102(4) 110102-1 c© 2013 Chinese Optics Letters



COL 11(11), 110102(2013) CHINESE OPTICS LETTERS November 10, 2013

case, Cθ (t, β) can be written as

Cθ (t, β) =πk−2

∞∫

0

κ3Wφ (κ)GD (κ)

[J0 (ν⊥tκ) − cos (2β)J2 (ν⊥tκ)] dκ, (6)

where Wφ (κ) is the wave-front phase power spectrum.
For plane and spherical waves, Wφ (κ) takes different

expressions[16,17]:

Wφ(pl) (κ) = 2πk2
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0

Φn (κ) cos2
(

κ2z
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)
dz, (7)

Wφ(sp) (κ) = 2πk2
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0

Φn (κ)
( z
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)2

cos2
[
κ2z (L − z)

2kL

]
dz,

(8)

where Wφ(pl) (κ) and Wφ(sp) (κ) are the wave-front phase
power spectrum functions for plane and spherical waves,
respectively.

GD (κ) denotes the point-spread function of the re-
ceiver aperture[18]

GD (κ) = exp

[
−

c2D2κ2

4

]
, c = 0.52. (9)

For weak non-Kolmogorov turbulence, temporal power
spectral models of AOA fluctuations for plane and spher-
ical waves can be expressed by substituting the general-
ized exponential spectral model (Eq. (1)) into Eqs. (7)
and (8):

Wθ(pl)(α, l0, L0, ω, β) = 8π2

∞∫

0
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Wθ(sp) (α, l0, L0, ω, β) = 8π2
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(11)

where Wθ(pl) (α, l0, L0, ω, β) and Wθ(sp) (α, l0, L0, ω, β)
are the temporal power spectrum functions of AOA
fluctuations for plane and spherical waves, respectively.
These functions consider the influences of the inner and
outer scales of finite turbulence as well as general spec-
tral power law values.

Integrating[19]:

∞∫
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J0 (ax) cos (bx) dx =
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)−1/2
0 < b < a

0 b > a
,

(12)
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where Tm (z) is the Tchebichef polynomial,

Tm (z) = cos
(
m cos−1 z

)
, (14)

the integrations of Eqs. (10) and (11) with respect to t
are obtained. Then, assuming geometrical optics behav-
iors, cos2

(
κ2z

/
2k

)
≈ 1. Under the condition that the

Fresnel zone (L/k)
1/2

is much smaller than the receiver

aperture diameter (L/k)
1/2 ≪ D and using the following

integration function[19]:
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Γ (2ν) (a + b)µ+ν−1 p−µ−ν exp [p (a − b) /2] Wµ−ν,µ+ν−1/2 (bp + ap) , t > b
,

(15)
the analytical expressions for Wθ(pl) (α, l0, L0, ω, β) and Wθ(sp) (α, l0, L0, ω, β) are finally derived as

Wθ(pl) (α, l0, L0, ω, β) = 4π2Â (α) Ĉ2
nL · [g1 (D, α, l0, L0, ω, β) − g2 (D, α, l0, L0, ω, β)] , (16)

Wθ(sp) (α, l0, L0, ω, β) =
4

3
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where Wµ,ν (z) is the Whittaker’s confluent hypergeo-
metric function. The quantity ω0, sometimes called the
Fresnel frequency, is uniquely defined by the Fresnel scale

and the mean wind speed, ω0 = ν⊥ (L/k)−1/2. This pa-
rameter physically represents the transition frequency at
which the temporal power spectrum of irradiance fluctu-
ations begins to decay under weak fluctuations.

Numerical calculations are performed to analyze the in-
fluences of the finite outer scale, general spectral power
law, β, and D on the temporal power spectrum of AOA
fluctuations. In the following calculations, parameters
are set as L = 1 000 m, λ = 1.55 µm, and ν⊥ = 4 m/s;
other values can also be chosen. The temporal power
spectra of AOA fluctuations normalized by the variance
of AOA fluctuations (the expressions of variance of AOA
fluctuations have been derived in Ref. [20]) may be plot-
ted as a function of ω/ω0 for plane and spherical waves
and take the same expressions for both types of waves.

To analyze the influence of the outer scale of turbu-
lence on the temporal power spectrum of AOA fluctua-
tions, the other parameters are fixed to α = 10/3 (he-
lical turbulence[21,22]), β = 0, and D = 0.25 m. Note
that these values are chosen as an example, and other
values may be selected if necessary. As AOA fluctua-
tions are caused mainly by large-scale turbulence cells,
the influence of the inner scale of turbulence on the final
expressions may be ignored (Fig. 1). In this calcula-
tion, l0 = 5 mm is chosen as an example. Figure 2
shows the numerical calculation results with different
outer scales of turbulence. As the outer scale of tur-
bulence increases, the temporal power spectrum of AOA
fluctuations for plane/spherical wave increases, especially
at low-frequency regions (ω < 0.1ω0). This phenomenon
results from phase fluctuations, which are contributed to
mostly by the refractive effects of large-scale turbulence
cells (sizes larger than the Fresnel scale

√
λL[1]). For at-

mospheric turbulence, L0 is usually expressed in units
of meters; thus, the condition of L0 ≫

√
λL is basically

satisfied. According to the Richardson energy cascade
theory of turbulence[1], the number of turbulence cells
with sizes in the order of

√
λL increases as L0 increases.

Optical waves then meet a major number of large-scale
turbulent cells along its propagation length, and these
cells yield higher values of AOA fluctuations relative to
the case of lower outer scale values, where more large
scales are cut out. Therefore, the temporal power spec-
trum of AOA fluctuations increases with increasing L0

values.
Figures 3, 4, and 5 plot the curves of the temporal

power spectrum of AOA fluctuations normalized by the

Fig. 1. Normalized temporal power spectrum of AOA fluc-
tuations as a function of ω/ω0 with different inner scales of
turbulence.

Fig. 2. Normalized temporal power spectrum of AOA fluc-
tuations as a function of ω/ω0 with different outer scales of
turbulence.

Fig. 3. Normalized temporal power spectrum of AOA fluctu-
ations as a function of ω/ω0 with different α values.
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Fig. 4. Normalized temporal power spectrum of AOA fluctu-
ations as a function of ω/ω0 with different β values.

Fig. 5. Normalized temporal power spectrum of AOA fluctu-
ations as a function of ω/ω0 with different D values.

Table 1. Parameters Adopted in Figs. 3–5 (Other
Values Can Also be Adopted)

L0 (m) l0 (mm) α β (rad) D (m)

Fig. 3 10 5
3.1,10/3,

0 0.25
11/3,3.9

Fig. 4 10 5 10/3
0, π/4,

0.25
3π/8,π/2

Fig. 5 10 5 10/3 0
0.2,0.4,

0.6,0.8

variance of AOA fluctuations with variable α, β, and D,
respectively. The parameters are set and listed in Table
1. The parameters α, β, and D produce influences on the
temporal power spectrum of AOA fluctuations identical
to those described in Ref. [8]. The findings obtained
indicate that introduction of inner and outer scales of
turbulence to the expressions of the temporal power
spectral models of AOA fluctuations will not change the
influences of α, β, and D on the final expressions.

In conclusion, new analytical expressions of the tem-
poral power spectrum of AOA fluctuations are derived
for both plane and spherical waves propagating hor-
izontally through weak non-Kolmogorov atmospheric
turbulence. Calculations show that the temporal power
spectrum of AOA fluctuations increases with increasing
outer scale of turbulence, especially in low-frequency re-
gions (ω < 0.1ω0). In addition, the slopes of the curves

of normalized temporal spectrum versus ω/ω0 decrease
with increasing power law α. As D increases, the aver-
age aperture effect introduced by D is exhibited. The
results of this study will support future investigations on
the effects of turbulence on plane and spherical optical
waves propagating horizontally through non-Kolmogorov
atmospheric turbulence.
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